開發環境:
MDK:Keil 5.30
開發板:GD32F207I-EVAL
MCU:GD32F207IK
Cortex-M的內核中包含Systick定時器了,只要是Cortex-M系列的MCU就會有Systick,因此這是通用的,下面詳細分析。
1 Systick工作原理分析
SysTick 定時器被捆綁在 NVIC 中,用于產生 SysTick 異常(異常號 :15)。在以前,操作系統和所有使用了時基的系統都必須有一個硬件定時器來產生需要的“滴答”中斷,作為整個系統的時基。滴答中斷對操作系統尤其重要。例如,操作系統可以為多個任務分配不同數目的時間片,確保沒有一個任務能霸占系統 ;或者將每個定時器周期的某個時間范圍賜予特定的任務等,操作系統提供的各種定時功能都與這個滴答定時器有關。因此,需要一個定時器來產生周期性的中斷,而且最好還讓用戶程序不能隨意訪問它的寄存器,以維持操作系統“心跳”的節律。
Cortex-M3 在內核部分包含了一個簡單的定時器——SysTick。因為所有的 CM3 芯片都帶有這個定時器,軟件在不同芯片生產廠商的 CM3 器件間的移植工作就得以簡化。該定時器的時鐘源可以是內部時鐘(FCLK,CM3 上的自由運行時鐘),或者是外部時鐘。不過,外部時鐘的具體來源則由芯片設計者決定,因此不同產品之間的時鐘頻率可能大不相同。因此,需要閱讀芯片的使用手冊來確定選擇什么作為時鐘源。在 GD32 中SysTick 以 HCLK(AHB 時鐘)或 HCLK/8 作為運行時鐘,見上圖。
SysTick 定時器能產生中斷,CM3 為它專門開出一個異常類型,并且在向量表中有它的一席之地。它使操作系統和其他系統軟件在 CM3 器件間的移植變得簡單多了,因為在所有 CM3 產品間,SysTick 的處理方式都是相同的。SysTick 定時器除了能服務于操作系統之外,還能用于其他目的,如作為一個鬧鈴、用于測量時間等。 Systick 定時器屬于Cortex 內核部件 ,可以參考《ARM Cortex-M3 權威指南》((英)JosephYiu 著,宋巖譯,北京航空航天大學出版社出版)來了解。
2 Systick寄存器分析
在傳統的嵌入式系統軟件按中通常實現 Delay(N) 函數的方法為:
for(i = 0; i <= x; i ++);
x --- ;
對于GD32系列微處理器來說,執行一條指令只有幾十個 ns,進行 for 循環時,要實現 N 毫秒的 x 值非常大,而且由于系統頻率的寬廣,很難計算出延時 N 毫秒的精確值。針對GD32 微處理器,需要重新設計一個新的方法去實現該功能,以實現在程序中使用 Delay(N)。
Cortex-M3 的內核中包含一個 SysTick 時鐘。SysTick 為一個 24 位遞減計數器,SysTick 設定初值并使能后,每經過 1 個系統時鐘周期,計數值就減 1。計數到 0 時,SysTick 計數器自動重裝初值并繼續計數,同時內部的 COUNTFLAG 標志會置位,觸發中斷 (如果中斷使能情況下)。
在 GD32 的應用中,使用 Cortex-M3 內核的 SysTick 作為定時時鐘,設定每一毫秒產生一次中斷,在中斷處理函數里對 N 減一,在Delay(N) 函數中循環檢測 N 是否為 0,不為 0 則進行循環等待;若為 0 則關閉 SysTick 時鐘,退出函數。
注: 全局變量 TimingDelay , 必須定義為 volatile 類型 , 延遲時間將不隨系統時鐘頻率改變。
Cortex-M3中的Systick部分內容屬于NVIC控制部分,一共有4個寄存器,名稱和地址分別是:
STK_CTRL,0xE000E010--控制寄存器
第0位:ENABLE,Systick 使能位
(0:關閉Systick功能;1:開啟Systick功能)
第1位:TICKINT,Systick 中斷使能位
(0:關閉Systick中斷;1:開啟Systick中斷)
第2位:CLKSOURCE,Systick時鐘源選擇
(0:使用HCLK/8 作為Systick時鐘;1:使用HCLK作為Systick時鐘)
第16位:COUNTFLAG,Systick計數比較標志,如果在上次讀取本寄存器后,SysTick 已經數到了0,則該位為1。如果讀取該位,該位將自動清零
STK_LOAD, 0xE000E014--重載寄存器
Systick是一個遞減的定時器,當定時器遞減至0時,重載寄存器中的值就會被重裝載,繼續開始遞減。STK_LOAD 重載寄存器是個24位的寄存器最大計數0xFFFFFF。
STK_VAL, 0xE000E018--當前值寄存器
也是個24位的寄存器,讀取時返回當前倒計數的值,寫它則使之清零,同時還會清除在SysTick控制及狀態寄存器中的COUNTFLAG標志。
STK_CALRB, 0xE000E01C--校準值寄存器
校準值寄存器提供了這樣一個解決方案:它使系統即使在不同的CM3產品上運行,也能產生恒定的SysTick中斷頻率。最簡單的作法就是:直接把TENMS的值寫入重裝載寄存器,這樣一來,只要沒突破系統極限,就能做到每10ms來一次 SysTick異常。如果需要其它的SysTick異常周期,則可以根據TENMS的值加以比例計算。只不過,在少數情況下, CM3芯片可能無法準確地提供TENMS的值(如, CM3的校準輸入信號被拉低),所以為保險起見,最好在使用TENMS前檢查器件的參考手冊。
SysTick定時器除了能服務于操作系統之外,還能用于其它目的:如作為一個鬧鈴,用于測量時間等。要注意的是,當處理器在調試期間被喊停( halt)時,則SysTick定時器亦將暫停運作。
3 Systick定時器實現
SysTick屬于Cortex-M內核的部分,因此其相關的定義在core_cm3.h文件中。
3.1 main文件分析
主函數如下:
/*
brief main function
param[in] none
param[out] none
retval none
*/
int main(void)
{
//systick init
sysTick_init();
/* configure LED1 GPIO port */
led_init(LED1);
/* configure LED2 GPIO port */
led_init(LED2);
/* configure LED3 GPIO port */
led_init(LED3);
/* configure LED4 GPIO port */
led_init(LED4);
while(1)
{
/* turn on LED1, turn off LED4 */
led_on(LED1);
led_off(LED4);
/*delay 500ms*/
delay_ms(500);
/* turn on LED2, turn off LED1 */
led_on(LED2);
led_off(LED1);
/*delay 500ms*/
delay_ms(500);
/* turn on LED3, turn off LED2 */
led_on(LED3);
led_off(LED2);
/*delay 500ms*/
delay_ms(500);
/* turn on LED4, turn off LED3 */
led_on(LED4);
led_off(LED3);
/*delay 500ms*/
delay_ms(500);
}
}
在 main 函數中,sysTick_init和 delay_us() 這兩個函數比較陌生,它們的功能分別是配置好 SysTick 定時器和進行精確延時。整個 main 函數的流程就是初始化 LED 及SysTick 定時器之后,就進入死循環,點亮LED的時間為精確的 500 ms。
3.2 gd32f207i_systick_eval.c文件分析
配置并啟動 SysTick
我們看一下systick_init()這個函數,其功能是啟動系統滴答定時器 SysTick。
/*
brief SysTick init
param[in] none
param[out] none
retval none
*/
void sysTick_init(void)
{
/* SystemFrequency / 1000 1ms中斷一次
* SystemFrequency / 100000 10us中斷一次
* SystemFrequency / 1000000 1us中斷一次
*/
/* setup systick timer for 1000Hz interrupts */
if(SysTick_Config(SystemCoreClock / 100000U)){
/* capture error */
while(1){
}
}
// 關閉滴答定時器
SysTick->CTRL &= ~ SysTick_CTRL_ENABLE_Msk;
/* configure the systick handler priority */
NVIC_SetPriority(SysTick_IRQn, 0x00U);
}
本函數實際上只是調用了 SysTick_Config() 函數,它是屬于內核層的 Cortex-M3 通用函數,位于 core_cm3.h 文件中。若調用 SysTick_Config() 配置 SysTick 不成功,則進入死循環,初始化 SysTick 成功后,先關閉定時器,在需要的時候再開啟。SysTick_Config() 函數無法在GD32 外設固件庫文件中找到其使用方法。所以我們在 Keil 環境下直接跟蹤這個函數到 core_cm3.h 文件,查看函數的定義。
/** \brief System Tick Configuration
The function initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable __Vendor_SysTickConfig is set to 1, then the
function SysTick_Config is not included. In this case, the file device.h
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1) > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */
SysTick->LOAD = ticks - 1; /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Systick Interrupt */
SysTick->VAL = 0; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0); /* Function successful */
}
在這個函數定義的前面有關于它的注釋,如果我們不想去研究它的具體實現,可以根據這段注釋了解函數的功能 :這個函數啟動了 SysTick ;并把它配置為計數至 0 時引起中斷 ;輸入的參數 ticks 為兩個中斷之間的脈沖數,即相隔 ticks 個時鐘周期會引起一次中斷 ;配置 SysTick 成功時返回 0,出錯時返回 1。但是,這段注釋并沒有告訴我們它把 SysTick 的時鐘設置為 AHB 時鐘還是 AHB/8,這是一個十分關鍵的問題,于是,我們將對這個函數的具體實現進行分析,與大家再分享一下如何分析底層庫函數。分析底層庫函數,要有 SysTick 定時器工作分析的知識準備。
檢查輸入參數
SysTick_Config() 第 3 行代碼是檢查輸入參數 ticks,因為 ticks 是脈沖計數值,要被保存到重載寄存器 STK_LOAD 寄存器中,再由硬件把 STK_LOAD 值加載到當前計數值寄存器 STK_VAL 中使用,STK_LOAD 和 STK_VAL 都是 24 位的,所以當輸入參數 ticks 大于其可存儲的最大值時,將由這行代碼檢查出錯誤并返回。
位指示宏及位屏蔽宏
檢查 ticks 參數沒有錯誤后,就稍稍處理一下把 ticks-1 賦值給 STK_LOAD 寄存器,要注意的是減 1,若 STK_VAL 從 ticks?1 向下計數至 0,實際上就經過了 ticks 個脈沖。這句賦值代碼使用了宏 SysTick_LOAD_RELOAD_Msk,與其他庫函數類似,這個宏是用來指示寄存器的特定位置或進行位屏蔽的。
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16 /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1ul << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2 /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1ul << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1 /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1ul << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0 /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1ul << SysTick_CTRL_ENABLE_Pos) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0 /*!< SysTick LOAD: RELOAD Position */
上一篇:【技術分享】星空派GD32開發板LVGL移植經驗分享
下一篇:keil中GD32 MCU IAP中APP的存儲地址如何設置?
推薦閱讀最新更新時間:2025-04-16 16:03



設計資源 培訓 開發板 精華推薦
- 萊洛三角V2-適配3205電機 兼容2204電機版本
- 【訓練營】一只笨狗
- 使用 Analog Devices 的 LT1584CT-3.45 的參考設計
- 12Gbps 多通道 BERT 板參考設計
- STEVAL-MKI153V1、H3LIS331DL 3軸數字加速度計轉接板,用于標準DIL24插座,兼容STEVAL-MKI109V2
- SiP2802低功耗電流模式控制器典型應用電路
- AN54,采用 LTC1149 10-48V、3.3V/2A 高壓降壓轉換器的應用電路
- 使用 NXP Semiconductors 的 BGA3012 的參考設計
- C3247488_SC16IS752IPW芯片方案驗證板
- STM32G031J6 MCU的探索套件